Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.com/article/print?articleld=232700238&siteSectionName=cpp

What you need to know.

DrDobb's ™

THE WORLD OF SOFTWARE DEVELOPMENT

A Simple Function for Formatting Currency

Formatting currency is a nightmarishly difficult problem. Consider this correct value that would be
used in India: 3,25,84,729.25 This function gives you fine-level control over currency formats and
makes it simple to switch between dollars, shekels, rupees, and yen without writing separate
routines.

By Adolfo Di Mare
March 26, 2012
URL:http://drdobbs.com/cpp/232700238

Programmers are often called upon to present numeric quantities formatted as money. Conceptually, this is not a
tough job. It's a simple matter of generating a formatted string that corresponds to a value stored in a numeric
variable.

There are complexities, of course. For example, sometimes the fractional part is truncated and sometimes it is
rounded according to specific rules. There are many international currency types and many different symbols to
represent them. You can't even be sure how many decimal places to use. European currencies are customarily
formatted with two decimal places, but many Arab currencies require three decimals for fractional parts.

In America, commas group digits in threes and the dot is used to separate whole dollars from cents. In much of
Europe, the punctuation symbols are reversed. But that's just the beginning. In India, digits are grouped in pairs,
and sometimes in trios. The user who sees Rs3,25,84,729.25 on an e-banking display screen has no trouble
parsing the amount as 3 crores, 25 lakhs, 84,729 rupees, and 25 paise.

Programmers must also contend with different ways of representing negative amounts and even the placement of
currency symbols before or after numeric digits — with or without a whitespace buffer.

Clearly, programmers who deal with multiple currencies must be prepared to contend with substantial
complexity. In the C and C++ world, they logically start with locales. Locales are not to my taste, however. My
experience is that they lead to low-level solutions that can be hard to write, read, debug, and maintain. That's
what inspired me to search for an alternate solution to the money-formatting problem.

Learning from the Past

The first programming languages | learned were Fortran and Cobol. | frequently used picture clauses in my
programs. They are simple to define and use, and they provide many formatting options. Picture clauses have
worked well for decades, but for some reason, they are not part of the C++ or C library. | decided to base my
C/C++ currency-formatting function on Cobol's picture clauses.

10f9 03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

The first challenge | faced was to choose a name for my function. I settled on mnyfmt, which is a sort of tribute
to strilen. Like strlen, mnyfmt is a six-letter name that starts by specifying the object the function acts upon,
then describes the action it performs.

Next, | had to figure out how to round numbers. | discovered that truncation is one of more than a dozen options.
I learned that bankers use a special rounding scheme called "round half to even," in which rounding goes to the
closer integer number, but halves always round to an even number. For example, -12.63 rounds to -13 and -12.50
rounds to -12, but +13.50 rounds to 14.

Handling so many rounding schemes is overwhelming...so | decided to decide to set the problem aside. My
function does not accept a floating-point value as an argument, but instead accepts two integer parameters. One
is the integer part of the number to format, and the other is the fractional part. Programmers must do their own
rounding before calling my function. The invocation reads mnyfmt(12,50) instead of mnyfmt(12.50) — note
the comma that separates the two numbers. That's not a decimal point.

My first implementation was a C++ template function that received a std: :string argument. However, |
discovered that | was not using any templates, nor any std: - string functionality, so | replaced the C++

std: :string with a regular zero-terminated character array. | also added a parameter to mark the fractional
separator. In my test programs, | used commas and dots, but there are situations where other separators could be
useful.

At this point, the function prototype looked like this:

char* mnyfmt(char *fmtstr, char dec, long intpart, int fractpart);

{ // test_overwrite
typedef struct struct_overwrite

char bytes 8[8]; // 64 bits: probably aligned
int int_neg; // -1 usually has all its bits equal to 1
} overwrite

overwrite o = {"1","2","3","4","5","6","7","\0", —1}
assertTrue(8-1= strlen(o bytes 8) && o.int_neg == —l);
strcpy(o.bytes 8, '1234567..'); // 2 more bytes..
assertTrue(9==strlen(o. bytes_8));
assertFalse(o.int_neg == -1 && "Adjacent memory overwritten ');
assertTrue(o.int_neg 1= -1);
assertTrue(CHAR_BIT == 8 && '8 bits bytes required');

}
}

I decided to use only one char*> argument because | know that C strings are problematic when dealing with
limited memory. For example, field bytes_8 can hold only eight characters. When 10 are copied into it, the last
two overwrite whatever values are stored after bytes_8 — in this case, changing the value of the field int_neg.
This type of error is particularly difficult to catch.

Refining the Function

When the string that contains the picture clause is also the place where the formatted value will reside, the
programmer needs to ensure that this variable is large enough to hold the resulting value. For most applications, a
string of 96 or 128 bytes will be big enough. For what it's worth, you can represent the U.S. national debt of $14
trillion with just 16 digits, including two for the cents.

Best practices call for the construction of tests along with code. That's why my code is peppered with
assertTrue and assertFalse Statements. They mimic the assertions used in JUnit, the test framework for
Java. In the code shown here, they simply output the condition tested when the assertion fails.

20f9 03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

Earlier versions of mnyfmt returned a pointer to the formatted string, mimicking the behavior of strcpy. But it
turns out that it is more useful if a pointer to the first significant digit is returned, so the same picture clause can
be used to format a small value like 1235.87 or a huge one like 123456789.88. mnyfmt always uses the hyphen
as the negative sign, and it replaces a 9 in the format string. The only character in the format string that ever gets
changed is a 9.

As mnyfmt replaces each 9 in the format string with the corresponding digit, sometimes the result begins with a
decimal separator. This special case should be handled by the programmer as there is no generalized solution that
can be applied by mnyfmt.

Putting mnyfmt Through its Paces

The implementation of mnyfmt is quite straightforward. It locates the decimal fractional character and backs up,
swapping the format character 9 with the corresponding digit. Then it does the same moving forward with the
decimal digits. Any other characters remain untouched. If the operation fails for any reason, mnyfmt returns
(char*) (0). As the following code demonstrates, every invocation of mnyfmt should ensure that a non-null
value is returned.

// test_example

char *sgn, fmtstr[96], buffer[96];

strcpy(buffer, ""USD$ '); // picture clause

strcpy(fmtstr , '99,999,999.99999");

if ((sgn = mnyfmt(fmtstr, "_.", -102455,87)))
{

assertTrue(eqgstr(fmtstr, ''0-,102,455.87000"));
it (("sgn=="-7) && (*,"==*(sgn+1)))
{

++sgn; *sgn="-";

}
assertTrue(eqgstr(sgn, "-102,455.87000"));
strcat(buffer, sgn);
assertTrue(egstr(buffer, "USD$ -102,455.87000'));

else

assertFalse(ERROR [???7]: " '-102,455.87000");
}

In the following code, mnyfmt returns a null pointer (char*)(0). The integer part of the value to format, 2455,
requires space for four digits, but the picture clause has only three format characters before the decimal
separator. The fmtstr remains unchanged.

// test._too.small

char *sgn, fmtstr[96];

strcpy(fmtstr, ''999.99999');

if ((sgn = mnyfmt(fmtstr, "_.", 2455,87)))

// never executed ==> buffer too small
// 2455 has 4>3 digits [999.]

assertTrue(sgn == 0);
assertTrue(eqstr(fmtstr, '999.99999"));

Due to the flexibility of the picture buffer approach, formatting can be quite adaptable. In the following code, a
variable called buffer is used to put parentheses around a formatted value if it is negative.

// test_parentheses

char *sgn, fmtstr[96], buffer[96];
strcpy(buffer, "USD$ ");
strcpy(fmtstr, ''9,999,999.999'");

30f9 03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012

4 0f 9

if ((sgnh = mnyfmt(fmtstr, "_.",-102455,87)))
{ it (*sgn=="-")
{

// put parentheses around the formatted value
it (°,7==*(sgn+1))

// skip comma
++sgn; *sgn="-";

}
strcat(buffer, "('");
strcat(buffer, sgn);
strcat(buffer, '")'");
assertTrue(eqgstr(buffer, "USD$ (-102,455.870)'"));
else

strcat(buffer, sgn);

}

http://drdobbs.conVarticle/print?articleld=232700238&siteSectionName=cpp

Sometimes the money amount must fill the whole picture clause and its leading non-significant digits must be

displayed as asterisks. Here is how this is done:

// test.asterisks

char *sgn, fmtstr[96];

strcpy(fmtstr, "$9,999,999.999");

if ((sgn = mnyfmt(fmtstr, "_.", -455,87)))

it ((*sgn=="-7) && (°,"==*(sgn+1)))
{ ++sgn; *sgn="-";

}
assertTrue(egstr(sgn, "-455.870"));
for (--sgn; (sgn!=fmtstr); --sgn)
{

*sgn = "**; // avoid writing over "$"

}
assertTrue(egstr(fmtstr , "'$*****_455_.870"));
}

Dealing with floating-point values is not hard, but some care should be taken. In the example below, the double
value to format is split into its integer and fractional parts with the standard function modf. The value written in
the program is 2455.87, but the fractional part calculated by modf is 86, not 87. It turns out that the binary
representation of this number is not exact in machines that use IEEE 754 binary floating-point arithmetic. To get

the expected result, a rounding strategy must be applied.

// test._modf

char *sgn, fmtstr[96];

double intdouble, fractdouble;

long intpart;

unsigned fractpart;

fractdouble = modf(2455.87, &intdouble);
intpart = intdouble; // 2455

fractpart = fractdouble*100; // .87

assertFalse(fractpart == 87 && "???");

assertTrue(fractpart == 86 && "111'); // binary rounding. ..

}
strepy(fmtstr, "[[999,999.99999 11');
if ((sgnh = mnyfmt(fmtstr, "_", intpart,fractpart)))

assertTrue(egstr(fmtstr, "[[002,455.86000 11')):;
assertTrue(eqgstr(sgn, "'2,455.86000]1]1'));

03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

50f9

{ // std::round_toward_infinity
fractpart = ceil(fractdouble*100);
strcepy(fmtstr, "[[999,999.99999 11');
assertTrue(fractpart == 87 && "111');
if ((sgn = mnyfmt(fmtstr, "_", intpart, fractpart)))

assertTrue(eqstr(sgn, '2,455.87000 11'"));

}
}
}

Using the Code

You should be able to compile mnyfmt with any C compiler. Even older C++ compilers support the (long long)
data type, which gets implemented as a 64-bit (at least) binary number that has enough range to represent most
money quantities. To make it possible to use mnyfmt in compilers that do not support this data type, macro
MNYFMT_NO_LONG_LONG is used to define mnyfmt_long (the type of the integer part of the number) as (1ong)
instead of (long long):

// test_limit

char *sgn, fmtstr[96];

#ifndef MNYFMT_NO_LONG_LONG
mnyfmt_long max = LONG_LONG_MAX;
strcpy(fmtstr, '999,999,999,999,999,999,999");
// 9,223,372,036,854,775,807
it (9223372036854775807LL == LONG_LONG_MAX)

if ((sgn = mnyfmt(fmtstr, " *, max,0)))
assertTrue(eqgstr('9,223,372,036,854,775,807", sgn));

}

else
assertFalse("BEWARE: (long long) is not 8 bytes wide');

3
#endif
{
mnyfmt_long max = LONG_MAX;
strcpy(fmtstr, '999,999,999,999");
// 2,147 ,483,647
it (2147483647L == LONG_MAX)

if ((sgnh = mnyfmt(fmtstr, " *, max,0)))

assertTrue(eqstr(*'2,147,483,647", sgn));

else

assertFalse(""BEWARE: (long) is not 4 bytes wide");

}

The number of trailing zeroes in the fractional part does not change the formatted value, as shown below. There
is no need for a negative fractional part because the sign comes in the integer part.

// test.fract.zero

char *sgn, fmtstr[96];

int i,tenPow;

// The fraction 643/2136 approximates

// 10g10(2) to 7 significant digits.

int N = ((CHAR_BIT * sizeof(int) - 1) * 643 / 2136);
tenPow = 12;

03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

for (i=0; i<N; ++i)

{
strcpy(fmtstr, '999,999.999999999");
it ((sgn = mnyfmt(fmtstr , ".", -455,tenPow)))
if ((*sgn=="-7") && (*,"==*(sgn+1)))
{
++sgn; *sgn="-";
}
assertTrue(egstr(fmtstr, '00--455.120000000'));
assertTrue(egstr(sgn, '"-455.120000000"));
tenPow *= 10; // 12 120 1200 12000 120000 ...
}
}

The signature for the final version of mnyfmt looks like this:

#ifndef MNYFMT_NO_LONG_LONG
typedef long long mnyfmt_long;
#else
typedef long mnyfmt_long;
#endif
char* mnyfmt

(

char *fmtstr,

char dec,
mnyfmt_long intpart,
unsigned fractpart

)
Quirks, Insights, and Obscure Details

Many C library functions come in multiple flavors, one for each type. For example, 1round, Iroundf,
Iroundl, Ilround, Ilroundf, and Ilroundl are versions of a single rounding function. The name changes
because various versions return different kinds of integers and accept different types of arguments. It is not
necessary to have multiple versions of mnyfmt because conversion to the wider integer type is always provided
by the compiler.

The relationship between types char and wchar_t is not always clear. The C standard does not specify the exact
type for wchar_t. It can be two or four bytes wide, or even one byte wide. Moreover, type char can be signed
or unsigned. Because most picture clauses for mnyfmt rely on characters from the 103-character portable
character subset that POSIX requires in any character set, it's easiest to use the char type for picture clauses and
perform an explicit conversion into wchar_t when necessary:

// Convert a char[] into a wchar_t[]

char *src, chBuff[128];

wchar_t *dst, *wcBuff;

strcpy (chBuff, "Convert me to (wchar_t)'™);

wcBuff = (wchar_t*)(malloc(strlen(chBuff)*sizeof(wchar_t)));
for (dst=wcBuff,src=chBuff; (*dst=*src); ++dst,++src) {}

// .. C++ will let you use more sophisticated stuff
free(wcBuff);

Most processors use two's complement binary arithmeti, which behaves strangely when dealing with the smallest
negative values. That is why mnyfmt fails to calculate the correct formatted result for this case and returns a null
pointer:

// test.minus.max

long long_min = -LONG_MAX-1;
assertTrue(long_min<0);
long_min = -long_min;

6 0of9 03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

assertTrue(long_min == -long_min);

The behavior of mnyfmt is different when formatting the integer and the fractional part of the number. In the
integer part, all leading non-significant format characters get replaced by 0, but only those that immediately
follow the decimal separator get changed. This is why, in the next code sample, the 1 in the format string stops
the substitution, leaving the remaining characters unchanged. This code also shows a bad programming practice,
as there is no check to ensure that sgn is not null. This error could cause a program failure when the null pointer
returned by mnyfmt gets used to change a value in memory. Enclosing every invocation of mnyfmt in an if
statement is necessary to avoid this pitfall.

// test_stop

char *sgn, fmtstr[96];

strcpy(fmtstr, ''999,999.9999919,0ne9."");
if ((sgn = mnyfmt(fmtstr, "_", 2455,87)))

It ((*sgn=="-7") && (*,"==*(sgn+1)))
{ ++sgn; *sgn="-";

}
assertTrue(eqstr(fmtstr, "002,455.8700019,0ne9."));
assertTrue(egstr(sgn, '2,455.8700019,0ne9."));

}

The following code shows that a picture clause can be used to format rupee amounts when words are also
included. This code looks for the decimal point and replaces it with a blank space to achieve a more convincing
result.

// test_rupee

char *sgn, fmtstr[96]; char *p;

strcpy(fmtstr, '99,99,99,99,99,99,99,999.99");
// LONG_LONG_MAX == 92,23,37,20,36,85,47,758.07
// 3,25,84,729.25

// 19 digits: 12 34 56 78 90 12 34 567 89

if ((sgn = mnyfmt(fmtstr, "_", 32584729,25)))

assertTrue(eqgstr(sgn, "3,25,84,729.25"));

}
strcpy(fmtstr,'99,99,99,99,99 crores 99 lakhs 99,999 rupees.99 paise');
if ((sgn = mnyfmt(fmtstr, "_", 32584729,25)))

for (p=sgn; *pl="_"&&*p1=0; ++p)

// advance p to dec
*p = " "; // blank the dot: "_rupees'" ==> "' rupees"

assertTrue(egstr(sgn, "3 crores 25 lakhs 84,729 rupees 25 paise™));
// Rp3,25,84,729.25 is read as three crore(s), twenty-five lakh(s),
// eighty-four thousand, seven hundred and twenty-nine rupees and
// twenty-five paise.

Picture clauses can be used to format almost any type of numeric values. The following code shows how to
handle dates and hours, but many more applications are possible.

// test_times

char *sgn, fmtstr[96];

strcpy(fmtstr, ''99/99/9999');

if ((sgn = mnyfmt(fmtstr, 000, 9272002,0)))
{

assertTrue(egstr(fmtstr, "09/27/2002));
assertTrue(egstr(sgn, '9/27/2002));

}

70f9 03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

8 of 9

strcpy(fmtstr , ''99:99:99'") ;
if ((sgn = mnyfmt(fmtstr, "?", 21435,0)))
{

assertTrue(egstr(fmtstr, "02:14:35"));
assertTrue(eqstr(sgn, "2:14:35"));
}

The next code sample illustrates a mistake any programmer could make: failure to copy the format string into the
formatting variable before invoking mnyfmt. Many programmers will choose to place their currency-formatting
logic inside functions that are tailored to each application in order to prevent mistakes like this one.

// test_no.strcpy

char *sgn, fmtstr[96];

strcpy(fmtstr, ''9,999.');

if ((sgn = mnyfmt(fmtstr, "_", 2455,87)))
{

assertTrue(egstr(sgn, "2,455.'));
}
if ((sgn = mnyfmt(fmtstr, "_.", 1400,87)))

// never executed: missing strcpy(Q)
// no char in "2,455_" is a format char

else

{
assertFalse(egstr(fmtstr, "1,400.'));

assertTrue(eqstr(fmtstr, ''2,455.')); // ???
assertTrue("'BEWARE: missing strcpy()'); // ???

strcpy(fmtstr, ''9,999.'");
sgn = mnyfmt(fmtstr, ".", 1400,87);
assertTrue(egstr(sgn, '1,400.'));

}
}

The double parentheses in the if statement that contains the invocation to mnyfmt might seem odd, but it is a
good programming practice suggested by the compiler: "warning: suggest parentheses around assignment used as
truth value."

A Good Enough Solution

mnyfmt in its current form does a "good enough™ job of formatting international currencies. Further
internationalization can be accomplished with a library like ISOMON, which provides simple access to 1ISO
currency data. If you're programming in C++, you'll probably want to pack mnyfmt inside a wrapper that
validates input and guards against other usage errors.

For further information, download the complete source code and documentation for mnyfm.

Adolfo Di Mare is a researcher at the Escuela de Ciencias de la Computacion e Informatica, Universidad de
Costa Rica, where he is full professor. He is a tutor at the Stvdivm Generale in the Universidad Autonoma de
Centro America, where he is a Cathedraticum.

What you need to know.

s Dr.Dobb's

03/27/2012 6:55 PM

Dr. Dobb's | A Simple Function for Formatting Currency | March 26, 2012 http://drdobbs.convarticle/print?articleld=232700238&siteSectionName=cpp

7HP VIRTE HMEH 3 WD, 16 Wikt HCWA & By LU KN TETDTIE %40 17 HRK: HENS @A KWAUHYHSAHG

90of9 03/27/2012 6:55 PM

