Enseñanza de C++ al Estudiante Java adolfo.dimare@ecci.ucr.ac.cr

Universidad de Costa Rica Escuela de Ciencias de la Computación e Informática

Agenda

- Especificación y Reutilización
- C++ Para Programación 2
- Convenciones de Programación
- Transición de Java A C++
- Bibliotecas de Programas
- Prueba de Programas
- El Curso Programación 2
- Java es una Mejor Elección

Enseñanza de C++ al Estudiante Java

adolfo.dimare@ecci.ucr.ac.cr

Especificación y Reutilización de Módulos

Módulo

Sección de un programa bien construida, con un fin específico, y que puede ser reutilizado.

adolfo.dimare@ecci.ucr.ac.cr

Especificación y Reutilización de Módulos

Reutilización

Reutilizar significa no inventar de nuevo la rueda, aprovechando lo que otros hicieron para construir nuevas soluciones (@1992).

"Reutilización de algoritmos" (@Stepanov)

adolfo.dimare@ecci.ucr.ac.cr

Especificación y Reutilización de Módulos

Especificación

Puede verse como un contrato en el que están definidos todos los servicios que la implementación del módulo es capaz de dar.

Toda especificación debe tener estas tres cualidades:

- Debe ser completa (debe decirse todo lo que hay que decir)
- Debe ser correcta (debe omitirse lo que no hay que decir)
- No puede ser ambigua

Java → C++ adolfo.dimare@ecci.ucr.ac.cr

C++ para Programación 2

Fuerte soporte

- Verificación de tipos
- Parametrización
- Herencia
- Polimorfismo
- → Reutilización

Java → C++ adolfo.dimare@ecci.ucr.ac.cr

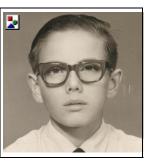
C++ para Programación 2

Cobertura C++

"Incorpora la mayor parte de los avances en programación, sin sacrificar eficiencia"

Stroustrup, Bjarne: Why C++ is not just an Object-Oriented Programming Language, OOPSLA 1995.

C++ → [PHP Visual Basic C# Java Phyton Ruby]



adolfo.dimare@ecci.ucr.ac.cr

Convenciones de Programación

- Especificación correcta, completa y no ambigua.
- Correcta indentación del código fuente.
- Correcto espaciado del código fuente.
- Código fuente escrito de manera legible y clara.
- Uso de identificadores significativos.

adolfo.dimare@ecci.ucr.ac.cr

Bibliotecas de Programas

Herramientas C++

Doxygen http://Doxygen.org

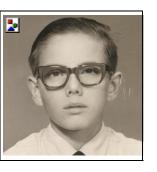
Code::Blocks http://CodeBlocks.org

Boost http://Boost.org

FLTK http://FLTK.org

SQLite http://SQLite.org

¿Cómo se hace la transición de Java a C++?


```
#ifndef Acumulador h
#define Acumulador h ///< Evita la inclusión múltiple
class Acumulador{private:long m total;long m cantidad;long m menor;long
m mayor;public:Acumulador():m total(0),m cantidad(0),m menor(0)
,m mayor(0) {/*borre();*/}~Acumulador() {}Acumulador(const
Acumulador&o) {*this=o;}const Acumulador& operator=(const Acumulador&o) {
m total=o.m total;m cantidad=o.m cantidad;m menor
=o.m menor;m mayor=o.m mayor;return*this;}void borre()
{m total = m cantidad = m menor = m mayor = 0;}long total() const{
return((m cantidad <= 2) ? 0 : m total-m menor-m mayor);}long
cantidad() const{return m cantidad;}void acumule(long
val) {m total += val;m cantidad++;if(m cantidad > 1) {
m menor = ( val < m menor ? val : m menor); m mayor = ( val > m mayor
? val : m mayor);}else{m menor = m mayor = val;}}void acumule( unsigned
n, const long * val) {for(unsigned i=0; i<n; ++i) {acumule(val[i]);</pre>
}}friend bool operator==(const Acumulador&A,const Acumulador&B) {return(
A.m total==B.m total&&A.m cantidad==B.m cantidad&&A.m menor==B.m menor
&&A.m mayor==B.m mayor);}friend bool operator!=(const
Acumulador&A, const
Acumulador&B) {return! (A==B);} friend bool check ok (const Acumulador&
A); friend class test Acumulador; }; /* bool */
#endif
```


adolfo.dimare@ecci.ucr.ac.cr

Prueba de Programas

```
Acumulador::Acumulador() [inline]
Constructor de vector.
{{    // test::constructor()
    Acumulador A;
    assertTrue( 0 == A.total() );
    long vec[] = { 1, 2, 3, 4, 5 };
    A.acumule( DIM(vec) , vec );
    assertTrue( 2+3+4 == A.total() );
    A.borre();
    assertTrue( 0 == A.total() );
}
```


adolfo.dimare@ecci.ucr.ac.cr

El Curso Programación 2

- 11 → SDF/Algorithms and Design
- 10 → SDF/Development Methods
- 3 → SE/Software Verification Validation
- 24 Horas totales

Además:

- PD/Parallel Decomposition
- PD/Parallelism Fundamentals
- PBD/Mobile Platforms

Java → C++ adolfo.dimare@ecci.ucr.ac.cr

Java es una Mejor Elección

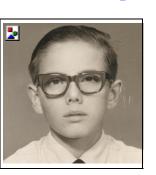
- Plantillas o programación genérica incorporada en el lenguaje.
- Programación "pegada al hierro".
- Apoyo para la programación orientada a objetos en la forma de parametrización y polimorfismo.
- Disponibilidad adecuada de compiladores y ambientes de compilación.
- Apoyo para separar la abstracción de cada módulo de su implementación efectiva.
- Disponibilidad de herramientas para la generación de documentación.



Java → C++ adolfo.dimare@ecci.ucr.ac.cr

Popularidad

1	С	19.9%
2	Java	17.2%
3	Objective-C	9.5%
4	C++	9.3%
5	C#	6.5%


Enseñanza de C++ al Estudiante Java adolfo.dimare@ecci.ucr.ac.cr

Universidad de Costa Rica Escuela de Ciencias de la Computación e Informática

Análisis Final

- No concentrarse en la sintaxis de C++
- Producir programas de calidad
- Especificación de módulos
- Reutilización de módulos
- Uso de ejemplos de prueba unitaria
- Complementar la documentación

[http://www.di-mare.com/adolfo/p/cppjava.htm]

