CI-1201 Programación II

	11
	SDF/Algorithms and Design

	9
	SDF/Development Methods

	3
	SE/Software Verification Validation


Programación II

SDF/Algorithms and Design

This unit builds the foundation for core concepts in the Algorithms & Complexity knowledge area, most notably in the Basic Analysis and Algorithmic Strategies units. 

Core-Tier1 topics [11 hours]:

· The concept and properties of algorithms 

· ----->Informal comparison of algorithm efficiency (e.g., operation counts) 

· The role of algorithms in the problem-solving process 

· Problem-solving strategies 

· ----->Iterative and recursive mathematical functions 

· ----->Iterative and recursive traversal of data structure 

· ----->Divide-and-conquer strategies 

· Implementation of algorithms 

· Fundamental design concepts and principles 

· ----->Abstraction 

· ----->Program decomposition 

· ----->Encapsulation and information hiding 

· ----->Separation of behavior and implementation 

Learning Outcomes:

1. [k] Discuss the importance of algorithms in the problem-solving process. 

2. [k] Discuss how a problem may be solved by multiple algorithms, each with different properties. 

3. [a] Create algorithms for solving simple problems. 

4. [a] Use pseudocode or a programming language to implement, test, and debug algorithms for solving simple problems. 

5. [a] Implement, test, and debug simple recursive functions and procedures. 

6. [e] Determine when a recursive solution is appropriate for a problem. 

7. [a] Implement a divide-and-conquer algorithm for solving a problem. 

8. [a] Apply the techniques of decomposition to break a program into smaller pieces. 

9. [a] Identify the data components and behaviors of multiple abstract data types. 

10. [a] Implement a coherent abstract data type, with loose coupling between components and behaviors. 

11. [e] Identify the relative strengths and weaknesses among multiple designs or implementations for a problem. 

SDF/Development Methods

This unit builds the foundation for core concepts in the Software Engineering knowledge area, most notably in the Software Design and Software Processes units. 

Core-Tier1 topics [9 hours]:

· Program correctness 

· The concept of a specification 

· Defensive programming (e.g. secure coding, exception handling) 

· Code reviews 

· Testing fundamentals and test-case generation 

· Test-driven development 

· The role and the use of contracts, including pre- and post-conditions 

· Unit testing 

· Modern programming environments 

· Programming using library components and their APIs 

· Debugging strategies 

· Documentation and program style 

Learning Outcomes:

1. [k] Explain why the creation of correct program components is important in the production of quality software. 

2. [a] Identify common coding errors that lead to insecure programs (e.g., buffer overflows, memory leaks, malicious code) and apply strategies for avoiding such errors. 

3. [a] Conduct a personal code review (focused on common coding errors) on a program component using a provided checklist. 

4. [a] Contribute to a small-team code review focused on component correctness. 

5. [k] Describe how a contract can be used to specify the behavior of a program component. 

6. [a] Create a unit test plan for a medium-size code segment. 

7. [a] Apply a variety of strategies to the testing and debugging of simple programs. 

8. [a] Construct, execute and debug programs using a modern IDE (e.g., Visual Studio or Eclipse) and associated tools such as unit testing tools and visual debuggers. 

9. [a] Construct and debug programs using the standard libraries available with a chosen programming language. 

10. [a] Apply consistent documentation and program style standards that contribute to the readability and maintainability of software. 

SE/Software Verification Validation

Core-Tier2 topics [3 hours]:

· Verification and validation concepts 

· Inspections, reviews, audits 

· Testing types, including human computer interface, usability, reliability, security, conformance to specification 

· Testing fundamentals 

· Unit, integration, validation, and system testing 

· Test plan creation and test case generation 

· Black-box and white-box testing techniques 

· Defect tracking 

· Testing parallel and distributed systems 

[Elective]

Topics: 

· Static approaches and dynamic approaches to verification 

· Regression testing 

· Test-driven development 

· Validation planning; documentation for validation 

· Object-oriented testing; systems testing 

· Verification and validation of non-code artifacts (documentation, help files, training materials) 

· Fault logging, fault tracking and technical support for such activities 

· Fault estimation and testing termination including defect seeding 

Learning Outcomes:

1. [k] Distinguish between program validation and verification. 

2. [k] Describe the role that tools can play in the validation of software. 

3. [a] Undertake, as part of a team activity, an inspection of a medium-size code segment. 

4. [k] Describe and distinguish among the different types and levels of testing (unit, integration, systems, and acceptance). 

5. [k] Describe techniques for identifying significant test cases for unit, integration, and system testing. 

6. [a] Use a defect tracking tool to manage software defects in a small software project. 

7. [k] Describe the issues and approaches to testing distributed and parallel systems. 

8. [a] Create, evaluate, and implement a test plan for a medium-size code segment. 

9. [k] Compare static and dynamic approaches to verification. 

10. [a] Discuss the issues involving the testing of object-oriented software. 

11. [k] Describe techniques for the verification and validation of non-code artifacts. 

12. [k] Describe approaches for fault estimation. 

13. [a] Estimate the number of faults in a small software application based on fault density and fault seeding. 

14. [a] Conduct an inspection or review of software source code for a small or medium sized software project. 

Generated by ACMgen v1.2 (c) 2012 Allan Lopez Hernandez allanlh (at) Gmail.com
